Tetrahedron Vol. 49, No 29, pp 6381-6398, 1993 Printed in Great Britain

Regioselective synthesis of inhibitors of histone acetyl transferase covalently linking spermidine to the S-terminus of coenzyme A and fragments.

Georges ROBLOT and Renée WYLDE* Centre C.N.R.S.-I.N.S.E.R.M. de Pharmacologie-Endocrinologie Faculté de Pharmacie, 15 avenue Charles Flahault, 34060 Montpellier Cedex1, France

Aimée MARTIN and Joseph PARELLO*

Unité Associée nº1111 au C.N.R.S.

Chimie des Médiateurs et Physico-chimie des Interactions biologiques, Faculté de Pharmacie, 15, avenue Charles Flahault, 34060 Montpellier Cedex 1, France

(Received in Belgium 5 January 1993; accepted 22 April 1993)

Key words: spermidine, coenzyme A, cysteamine, β -aletheine, enzyme inhibitors.

Abstract. The reaction of a bromoacetylthioester $BrCH_2CO-S-R$ (R radical in the coenzyme A series) with spermidine (Spd) derivatives is investigated and it is established that the adduct $SpdCOCH_2-S-R$ 1 is the product of the reaction. Parallel studies with model compounds show that this is a general reaction of bromoacetylthioesters. The synthesis of analogs of 1 is described and they correspond to inhibitors of the histone acetyltransferase.

In 1982, Cullis et al.¹ introduced the concept of a multisubstrate-type inhibitor interfering with two enzymatic activities, the acetylation of spermidine in the one hand and the acetylation of histones in the other hand, for which acetyleoenzyme A (CoA-S-Ac) acts as the acetyl donor. Such an inhibitor covalently associates the coenzyme A (CoA-SH) with spermidine (Spd) through a carboxymethylene bridge or "linker" corresponding to the general formula CoA-S-CH₂-CO-Spd **1**, with no particular regioselectivity in regard to the nitrogen atom N^1 , N^8 or N^4 of the spermidine molecule.

We describe here a regioselective synthesis of the inhibitor, CoA-S-CH₂-CO-Spd, so that the attachment of the spermidine molecule to the CoA moiety is totally controlled and occurs either through its N^1 (compound 1a) or its N^8 atom (compound 1b).

Compound 1a. The CoA numerotation is conform to 7.

6381

Similarly, we give here a full account of the synthesis of two "shortened" inhibitors in which coenzymeA is replaced by its S-terminal β -aletheinyl moiety (inhibitor 2a) or its S-terminal cysteaminyl moiety (inhibitor 3a). We have recently shown² that 2a has also an efficient inhibitory effect on the enzymatic acetylation of histones in chromatin.

R-S-CH2-CONH-(CH2)m-NH2

1a	R = CoA	n = 3	m = 4
1b	R = CoA	n = 4	m = 3
2a	$R = AcNH-(CH_2)_2-CONH-(CH_2)_2$	n = 3	m = 4
3a	$R = AcNH-(CH_2)_2$	n = 3	m = 4

The two-step synthesis of compound 1 (mixture containing presumably 1a and 1b) starting from CoA-SH, as proposed by Cullis et al.¹, apparently involves the intermediate derivative 10, i.e. thiophenylcarboxymethyl-CoA, which is finally reacted with the unprotected spermidine (Scheme 1). The reaction of 2-bromoacetylthiophenol **30** with CoA-SH needs, however, to be considered carefully since two contradictory reports exist in the literature. In their initial study, Chase and Tubbs³ concluded that the product of the reaction, CoA-SH + **30**, was the bromoacetyl derivative **42** (Scheme 1), as a result of the acylation of CoA-SH. In contrast Clements et al.⁴ invoked the formation of the thioester **10**, obtained by alkylation of CoA-SH (Scheme 1). We decided therefore to

investigate the reaction, CoA-SH + **30**, in more detail under the conditions used by the different authors 1,3,4 by 1 H NMR. As shown in Figure 1, the reaction mixture is characterized by a major product (yield>90%) which can be unambiguously assigned to the bromoacetyl derivative **42**, and not to **10**. Indeed, the methylene α to the bromine atom resonates at 4.17 ppm and practically no phenyl group is present (as expected for **10**).

We have observed that compound **30** must be highly purified for a careful control of the reaction CoASH + **30**. Crystallization of **30** is usually carried out in EtOH-H₂O mixtures³. We have observed that an additional product is obtained under such conditions, identified as C₆H₅-S-CH₂-CO-S-C₆H₅ **43**, according to:

Figure 1.¹H NMR spectra at 360 MHz of 42 (top) and CoA-SH (bottom) in D₂O solution. (*) corresponds to CO-CH₂-Br in 42.

As discussed below, the formation of **43** can be rationalized by an hydrolytic step (with formation of thiophenol) followed by alkylation of the intermediate thiophenol by **30**, in agreement with a previous report describing the formation of **43** from chloroacetylthiophenol in $EtOH^6$. A careful control of the purity of **30** can be conveniently carried out by ¹H NMR, since both compounds **30** and **43** display rather different spectra. By crystallizing **30** in benzene-hexane mixtures, a highly purified compound is thus obtained.

We decided to investigate the reaction of **30** with simpler thiols than CoA-SH itself, in order to characterize the corresponding R-S-COCH₂Br derivatives (Scheme 1). Starting from N-acetylcysteamine **5**, the acylated derivative **28** was obtained as practically the unique product of the reaction and was isolated in good yield. The structure of this bromoacetylated derivative is unambiguously established by NMR, as well as by comparison with the product obtained by direct acylation of **5** using bromoacetylbromide (see Experimental Section). Similarly, starting from N-acetyl- β -aletheine **20**, we obtain the corresponding bromoacetylated derivative **29**. As shown in Table 1, very similar ¹H NMR chemical shifts are observed for the CH₂ β group in compounds **28** and **29** (4.15 and 4.10 ppm, respectively) and **42** (4.17 ppm), thus establishing that the occurrence of a two-proton singlet at 4.10-4.17 ppm is characteristic of the S-COCH₂Br methylene group. Furthermore, the downfield shift of about 0.5 ppm of the CH₂ α upon formation of the thioester function in **42** (as compared to CoA-SH: δ CH₂ α = 2.60 ppm), is also observed with compounds **28**, **29**, as well as with **4** and **16** with no bromine atom (Table 1). Both S-bromoacetylthiol compounds, **28** and **29**, therefore provide additional evidence that it is acylation and not alkylation which occurs upon reaction of compound **30** with the different thiols investigated here.

In regard to reaction $42 \rightarrow 1$ (Scheme 1), it was interesting to investigate the reactivity of a simpler S- bromoacetyl derivative, such as 28, with the N⁴,N⁸-diBoc derivative 8 of spermidine (Scheme 3). Compound 9 thus obtained displays a carboxymethylene bridge S-CH₂-CO-N, binding the S atom of the cysteamine moiety to the

		R-CHS-CO-C	n _g r		
R'	R	δCH2α	δCH2β	solvent	compound
N-acetylcysteaminyl	Br	3.00 (t) 3.10 (t)	4.15 (s) 4.10 (s)	D ₂ O CDCl ₃	28
N-acetyl-β-aletheinyl	Br	3.10 (t)	4.10 (s)	CDCl ₃	29
N-acetylcysteaminyl	н	3.00 (t)		CDCl ₃	4
N-acetyl-β-aletheinyl	н	3.05		CDCl ₃	16
CoA-S	Br	3.01	4.17(s)	D ₂ O	42

Table 1. ¹H NMR chemical shifts (δ in ppm) of the methylene protons in α and β positions of the sulfur atom in:

 $\delta CH_2\alpha = 2.60$ ppm for CoA-SH (which corresponds to $C^{9}H_2$ in Table 3), s = singlet; t = triplet.

 N^1 atom of spermidine. This structure would be unexpected if the reaction simply resulted in the alkylation of the free N^1 amino group of **8** with elimination of the bromine atom of **28** (see below Scheme 6 for a more detailed understanding of the reaction **28** \rightarrow **9** in Scheme 3). The presence of two characteristic resonances at 2.70 ppm (S-CH₂\alpha; triplet) and 3.18 ppm (SCH₂\alpha'; singlet) in the ¹H NMR spectrum of **9** (see Table 2) is in agreement with the proposed structure (Scheme 3). Compound **9** is also obtained by alkylation of the corresponding thiol **5** in the presence of N¹-bromoacetyl derivative N⁴, N⁸-diBoc spermidine **24** with elimination of the bromine atom of **24**.

Scheme 3

Furthermore it is to be noted that the stability of **30** is such that, in alkaline ethanol medium, this compound leads instantaneously to 2-phenylthioacetic acid **31** (Scheme 4). Similarly **28** leads to the thioacetic acid **6**.

It is likely that the reactions, $30 \rightarrow 31$ and $28 \rightarrow 6$, follow the same pathway as postulated when 30 is reacted with a primary amine, under alkaline conditions (see below, Scheme 6). In contrast, Cullis et al.¹ used KHCO₃ as a base in the reaction of CoA-SH with 30. We have not investigated the stability of 30 under such mild alkaline conditions, but it is probable that 30 is not transposed into 31, and is subject to a nucleophilic attack by CoA-SH to yield the S-bromoacetyl derivative 42 of CoA-SH, as discussed above. It is to be noted that all compounds synthesized in this work, with the R"-CH₂-S-CH₂COR motif, display two characteristic resonances in their

¹H NMR spectra at 2.6-2.7 ppm (S-CH₂ α) and at 3.2-3.3 ppm (S-CH₂ α), as presented in Table 2.

R'	R	δCH2α	δCH2α	solvent	compound
N-acetylcysteaminyl	NH(CH2)3NBoc(CH2)4NHBoc	2.70 (t)	3.18 (s)	CDCl ₃	9
N-acetylcysteaminyl	NH(CH2)3NH(CH2)4NH2*	2.62 (t)	3.20 (s)	D ₂ O	Sa
N-acetylcysteaminyl	он	2.60 (t)	3.20 (s)	D ₂ O	6
N-acetyl-β-aletheinyl	ОН	2.70 (t)	3.32 (s)	D ₂ O	21
N-acetylcysteaminyl	OCH3	2.70 (t)	3.35 (s)	D ₂ O	7
N-acetyl-β-aletheinyl	OCH3	2.73 (t)	3.20 (s)	CDCl ₃	22
N-acetyl-β-aletheinyl	NH(CH2)3NBoc(CH2)4NHBoc	2.75 (t)	3.20 (s)	CDCl ₃	23
N-acetyl-β-aletheinyl	NH(CH2)3NH(CH2)4NH2*	2.60 (t)	3.20 (s)	D ₂ O	2a
CoA-S	NH(CH2)3NBoc(CH2)4NHBoc	2.75 (t)	3.30 (s)	D ₂ O	25
CoA-S	NH(CH2)4NBoc(CH2)3NHBoc	2.57 (t)	3.15 (s)	D ₂ O	37
CoA-S	NH(CH2)3NH(CH2)4NH2*	2.64 (t)	3.22 (s)	D ₂ O	1a
CoA-S	NH(CH2)4NH(CH2)3NH2*	2.56 (t)	3.25 (s)	D ₂ O	16

Table 2. ¹H NMR chemical shifts (δ in ppm) of the methylene protons α and α' in: $\underbrace{\mathbb{R}^{-CH_2} - \mathbb{C}H_2}_{\alpha'} - \mathbb{C}H_2 - \mathbb{$

Furthermore, we tried to obtain an analog of the putative derivative 10 (see Scheme 1) in the case of the simpler radical N-acetylcysteaminyl. The synthesis of such an analog **39** starting from **6** is described in Scheme 5.

$$\begin{array}{c} 1 \ Ac_2O \\ AcNH(CH_2)_2 - S - CH_2 - COOH \\ \hline & \bullet \\ 6 \\ \end{array} AcNH(CH_2)_2 - S - CH_2 - COOH \\ \hline & \bullet \\ 6 \\ 2 \ C_0H_5 - SH \\ \hline & \mathbf{39} \\ \end{array}$$

Scheme 5

On the basis of its ¹H NMR spectrum (see Experimental Section), compound **39** unambiguously corresponds to the expected structure with the thioether-thioester motif R'-S-CH₂-CO-S-R. In this case the resonance of the S-CH₂ α methylene group is significantly displaced to low field, i.e. 3.40 ppm (due to substitution by a thiophenyl group), whereas that of the CH₂ α group is practically unaffected, in compartison to compounds with R non-aromatic (Table 2). We confirm here that, besides the absence of aromatic resonances on the ¹H NMR spectrum of compound **42** (Fig.1), no triplet at 2.6-2.7 ppm (S-CH₂ α) and no singlet at 3.2-3.3 ppm (S-CH₂ α) are observed, thus reinforcing our conclusion that no alkylation of the thiol function is occurring, as previously assumed by Clements et al. ⁴.

In relation to the formation of 1 from 42(Scheme 1), the reaction of the bromoacetyl thiol ester 30 with different simple amines, such as aniline and n-butylamine, was studied, thus confirming the formation of the S-CH₂-CO "linker" in the final products (Scheme 6). Such reactions can be accounted for by a two-step pathway: (i) a nucleophilic attack of bromoacetylthiophenol by the primary amine to yield a bromoacetylamide with liberation of thiophenol, and (ii) a nucleophilic attack of the intermediate bromoacetylamide by thiophenol with bromide formation (under alkaline conditions) with elimination of the bromine atom. We note that the reaction of 28 with 8 (Scheme 3) is significantly slower than the reaction of 30 with n-butylamine, which proceeds instantaneously. It is likely that the nucleophilic attack of 30 by n-butylamine to give 41 (Scheme 6), is kinetically fa-

41

```
Scheme 6
```

voured in comparison to 28 +8 \rightarrow 9 (Scheme 3), since the leaving group originating from 30 corresponds to thiophenate instead of an aliphatic thiolate in the case of 28. When 30 is reacted with aniline, instead of n-butylamine, a reduction of the kinetics is observed, likely due to the reduced nucleophilicity of the amino group in aniline. Furthermore, the presence of a bromine atom in a position of the carbonyl group of the thioesters 28 and 30 introduces a favourable condition for a nucleophilic attack of this carbonyl group by the primary amine (first step in scheme 6). Indeed, in the absence of the halogen atom, when acetylthiophenol is reacted with aniline under similar conditions, acetanilide only appears in very weak amounts besides the unreacted acetylthiophenol. If the carbonyl function is displaced to a more distant position from the bromine atom, as in $C_{eH_{5}}$ -S-CO-(CH₂)₂-CH₂Br, no reaction is detected with aniline for the period of time used for the corresponding high-yield reactions: 28 \rightarrow 9 (Scheme 3), 30 \rightarrow 40 and 30 \rightarrow 41 (Scheme 6). The above mentioned 4-bromobutyric thioester of thiophenol was used to investigate the possibility of a cyclic intermediate (five-membered ring) to account for the "transposition" of the methylene group in the thioesters R-S-CO-CH₂Br to give R-S-CH₂-CONH-R in the presence of an amine R'-NH2 under alkaline conditions (putative three-membered ring). The absence of any transposition of the polymethylene chain in CeH5-S-CO-(CH2)2-CH2Br to give CeH5-S-(CH2)3-CONH-R' appears in favour of the twostep mechanism proposed in scheme 6. Obviously, a more detailed investigation of the mechanism of these reactions is necessary before any conclusion can be firmly drawn.

All together, these results allow us to conclude that the original conditions used by Cullis et al.¹ to obtain the multisubstrate inhibitor 1 (see Scheme 1) lead to the proposed CoA-S-CH₂-CO-Spd structure although the previously assumed intermediate compound 10 (CoA-thiophenylester) apparently is not formed under the conditions used by the authors, but instead CoA-S-bromoacetyl 42 is formed, as demonstrated in this work in agreement with the conclusion of Chase and Tubbs³.

As noted above, the reaction described in scheme 1 by Cullis et al.¹ does not allow inhibitor 1a or 1b to be obtained selectively. So, the main interest of our work consists to propose, as previously reported², a new synthetic pathway for preparing the inhibitor 1a from CoA-SH using the N¹-bromoacetyl derivative 24 of spermidine (Scheme 7). In this work, we show that such a two-step strategy is readily extended to the case of the positional isomer 1b, which is readily prepared from the N⁸-bromoacetyl derivative 36 (Scheme 7). Both compounds 1a and 1b are thus obtained in good yields and with a high degree of purity. Table 3 gives the NMR characteristics of 1a and 1b, as compared to those of CoA-SH itself.

CoA-SH		
BrCH ₂ CONH(CH ₂) _m NBoc(CH ₂) _n NHBoc	m=3, n=4 m=4, n=3	24 36
CoA-SCH2CONH(CH2) NBoc(CH2) NHBoc	m=3, n=4 m=4, n=3	95 37
	m=3. n=4	1.
CoA-SCH ₂ CONH(CH ₂)_NH(CH ₂) _n NH ₂	m=4, n=3	1b

Scheme 7

Adenosine molety				Pantetheine molety			Spermidine molety			
Proton	CoA-SH	1a	1b	Proton	CoASH	1 a	16	Proton	1a	1b
H(1')	617	6.17	6.16	H(1')	3.82	3.82	3.82	H(1+1')	3.26	٠
H(2')	4.87	4.85	4.85	H(1")	3.55	3.58	3.60	H(2+2')	1.87	2.07
H(3')	4 83	4.77	4.85	CH ₃ (2')	0.88	0.89	0.89	H(3+3')	3.01	
H(4)	4.59	4.56	4.56	CH ₃ (2")	0.76	0.79	0.78	H(5+5')	3.01	*
				H(3')	4.00	3.97	3.96			
H(5'+5")	4 23	4.24	4.24	H(5"+5")	3.46	3.44	3.43	H(0+0)	1.72	1.58
H(2)	8.29	8.40	8.38	H(6'+6")	2.46	2.43	2.43	H(7+7')	1.72	1.69
H(8)	8.55	8.60	8.58	H(8'+8")	3.31	3.31	3.28	H(8+8')	3.01	3.21
				H(9'+9")	2.60	2.64	2.56	1 1		
	1			1	1					

Table 3. ¹H NMR chemical shifts for CoA-SH, 1a and 1b in D₂O solution

Chemical shifts in ppm vsTSP (see Experimental section). The proton labeling follows ref. 7 (see also formulae 1a and 1b) The linker CH_2 methylene resonates at 3.22 ppm for 1a and 3.25 ppm for 1b. (*) corresponds to one of the overlapping triplets, centered at 3.03, 3.05 and 3.09 ppm respectively, for which no regioselective assignments are given here.

¹H NMR unambiguously establishes the nature of the substitution at the N¹ atom of spermidine in **1a** with the methylene protons 6 CH₂ and 7 CH₂ displaying equivalent chemical shifts in the spermidine moiety. In contrast, in 1b the 6 CH₂ and 7 CH₂ groups display distinct resonances (at 1.58 and 1.69 ppm), in agreement with the different environments of N⁴ and N⁸ (amine and amide, respectively). It is to be noted that in 1a the spermidine ²CH₂ group unexpectedly resonates at higher field (1.87 ppm) than it does in 1b (2.07 ppm). The former belongs to the motif $CO^{-1}NH^{-1}CH_2^{-2}CH_2^{-3}CH_2^{-4}NH^{-1}$ (the ²CH₂ group therefore occupies the β position, respectively to the primary amido group ¹N and the secondary amino group ⁴N), whereas the latter belongs to the motif $H_2^{1}N^{-1}CH_2^{-2}CH_2^{-3}CH_2^{-4}NH$ - (the ²CH₂ group therefore occupies the β position, respectively to both amino groups ¹NH₂ and ⁴NH). One would therefore expect, on the basis of inductive effects, that the ²CH₂ in **1a** would resonate at lower field than the ²CH₂ in **1b**, in contrast with what is observed experimentally (Table 3). As expected, inductive effects are observed for both ¹CH₂ and ⁸CH₂ when going from 1a to 1b (+ 0.2 ppm for ⁸CH₂ and -0.2 ppm for ${}^{1}CH_{2}$). One possibility would be that the locus occupied by the ${}^{2}CH_{2}$ in 1a is affected by ring current shift effects originating from the remote adenosine molety if the molecule adopts a folded conformation. It must be also noted that the H(2) resonance from the adenine ring has its position significantly altered in comparison to CoA-SH itself, whereas the H(8) resonance is practically not affected (see Table 3). Obviously, care needs to be exerted since intermolecular contacts could occur at the level of the adenine ring, and the differences observed for selective chemical shifts in the CoA-SH, 1a and 1b molecules might translate inter- as well as intramolecular effects. A hairpin-like conformation is observed for CoA-SH itself in the crystal of the binary complex CoA-SH/CAT (chloramphenicol acetyltransferase)⁸. A hairpin-folded conformation has also been invoked as a possible conformation in solution for CoA-SH and CoA-SAc on the basis of NMR evidence⁷. It is therefore intriguing to establish if such a folded conformation is also present in solution for compounds 1a and 1b, among other possible conformations (NMR work in progress).

We describe now the main steps of the synthesis leading to the inhibitors **1a**, **1b**, **2a** and **3a** of the histone acetyltransferase. The N¹-bromoacetyl N⁴,N⁸-diBoc spermidine **24**, which is the precursor of **1a**, was synthesized according to scheme 8, starting from 1,4-diaminobutane. The preparation of the diBoc derivative **8** of spermidine closely follows the procedure of Humora and Quick⁹, with the exception that LiAlH₄ was favourably replaced by H₂/Ni Raney during the reduction of the cyano function of **12** (see Experimental Section). Finally the acylation of the free ¹NH₂ group in **8** is achieved in high yield through reaction with bromoacetic acid in the presence of DCC or BOP (Scheme 8).

Similarly, N⁸-bromoacetyl N¹, N⁴-diBocspermidine **36**, which is the precursor of **1b** was prepared according to a novel strategy starting from 1,3-diaminopropane (Scheme 9). The preparation of the monoBoc derivative **32** is only achieved with a low yield (not exceeding 10%: see Experimental Section), whereas the two last steps, i.e. **34** \rightarrow **35** \rightarrow **36**, proceed in good yields (about 80% each). The transformations **32** \rightarrow **33** \rightarrow **34** are achieved with an overall yield of ca 30%.

The preparation of selectively protected derivatives of spermidine is crucial for carrying out such regioselective syntheses. In contrast to methods which afford a mixture of different Boc derivatives of spermidine, through partial derivatization by Boc₂O, followed by purification of the corresponding compounds¹⁰, both schemes 8 and 9 for producing N⁴, N⁸-diBocspermidine **8** (according to Humora and Quick⁹) and N¹, N⁴-diBocspermidine **36** (this work) correspond to strict regioselective strategies (the third diBoc derivative N¹, N⁸-diBoc spermidine has been also synthesized through a regioselective strategy^{10,11}).

In relation to the novel synthetic pathway given in scheme 7, the "shortened" inhibitor **2a** is obtained by replacing CoA-SH by N-acetyl β -aletheine **20** (Scheme 10). The diBoc derivative **23** was treated by TFA in a first time but subsequently it was treated by HCl to give **2a** as an hydrochloride, for preventing TFA effects during *in vivo* inhibitory studies(work in progress). The ¹H NMR spectrum of **2a** unambiguously establishes the validity of our synthetic strategy, in regard to the purity of the final product, as well as to its structure (see NMR parameters in Experimental Section). The observation of both ⁶CH₂ and ⁷CH₂ groups as a superimposed resonance at

R=N-acetyl- β-aletheine

Scheme 10

1.62 ppm clearly establishes the substitution of the Spd N¹atom as an amide (compare with 1a in Table 3). We note here that the Spd polymethylene chain is characterized by ³J vicinal coupling constants in the 6.8-7.3 Hz range, thus denoting the occurrence of time-averaged rotamers about the different single bonds. The ³J coupling constants are somewhat lower in the β -aletheine moiety, in the 6.4-6.6 Hz range, and this would translate either selective conformational effects along the chain, or inductive effects acting on the coupling constants. In agreement with our observations with **2a**, CoA-SH itself is characterized by ³J_{5',6'} and ³J_{6',9'} of about 6.6 Hz⁷, thus suggesting that the conformation of the β -aletheine moiety is similar in both molecules, **2a** and CoA-SH.

As an alternative way, to obtain the "shortened" inhibitors **2a** and **3a**, we have introduced the carboxymethylene group, or "linker", as the thioacetic derivatives of RSH compounds **5** and **20** by amide formation with the corresponding diBocspermidine derivative **8** (scheme 11).

It must be noted that the preparation of the R-S-CH2-COOH derivatives 6 and 21 can be readily carried out

by reacting bromoacetic acid itself with the corresponding thiol $R-SH^{12}$. In this respect, **6** and **21** were conveniently prepared from N-acetylcysteamine **5** and N-acetyl- β -aletheine **20**, respectively (Scheme 11). As noted above bromoacetyl derivatives of a thiol such as **30** and **28** (Scheme 4), lead to the same thioacetic acid derivatives **6** and **21**, but such a procedure was not further investigated here since a more direct possibility exists according to Scheme 10 for preparing the two "shortened" inhibitors **2a** and **3a**.

Both compounds **5** and **20** were prepared according to the procedure of Baddiley and Thain¹³. We also report a novel synthesis of **20** (see Experimental Section) through the condensation of the anhydride of β -alanine **18** with cystamine, followed by reduction of the S-S bond (Scheme 12). In comparison to the initial procedure by Baddiley and Thain¹³, our three-step synthesis starting from β -alanine appears to be more convenient, although

the overall yield is not improved significantly.

CONCLUSION

We provide here good evidence that the compound formed by reacting CoA-SH with bromoacetylthiophenol 30 is S-bromoacetylCoA 42, in agreement with the initial report of Chase and Tubbs³. Such a conclusion was challenged by Clements et al.⁴, who assumed that the reaction yields instead the 2-(S-CoA) acetic acid thiophenylester 10¹. These authors indeed observed by treating such a supposedly intermediate compound 10, under alkaline conditions that the product was 2-(S-CoA) acetic acid 11 (Scheme 1). Such a compound CoA-S-CH2-COOH would then derive in principle from CoA-S-CH2-CO-S-C6H5 10, through saponification of the thioester function. However, we demonstrate in this work that a simpler analog of 42, i.e.R-S-CO-CH2Br 28 (including the S-terminal cysteaminyl moiety of coenzymeA) is sensitive to alkaline conditions to yield the corresponding 2-(S-cysteaminyl) acetic acid 6, R-S-CH2-COOH, the analog of 11. Starting from the bromoacetyl derivative, CoA-S-CO-CH2Br 42 (and not 10) the formation of 11 is thus explained by a two-step reaction, i.e. saponification of the thioester function followed by a nucleophilic attack of the bromine atom by the intermediarily liberated thiolate anion, thus explaining the "inversion" of the motif S-CO-CH2- into S-CH2-CO-. A detailed mechanism of the reaction needs, however, to be established. Furthermore, we unambiguously establish here that the bromoacetyl derivative R-S-CO-CH₂-Br 28 leads, upon treatment with a monoamine derivative (diBoc derivative of Spd), to R-S-CH₂-CO-Spd. This apparently corresponds to a general reactivity of the bromoacetyl derivatives of thiols, as demonstrated by the reaction of bromoacetylthiophenol 30 itself with different nucleophiles (OH-, primary amine). Such a reaction appears to be novel, and it opens the route to the preparation of compounds R-S-CH2-COR' from halogeno (X) acetic acid thioesters X-CH2-CO-S-R' ⁶. All together, we suggest that the reaction, as carried out by Cullis et al 1 to prepare CoA-S- CH2-CO-Spd (through the reaction of CoA-SH with bromoacetylthiophenol 30 followed by the action of spermidine under alkaline conditions), follows the pathway: CoA-SH + 30 \rightarrow CoA-S-CO-CH₂Br \rightarrow CoA-S-CH₂CO-Spd, and not CoA-SH + **30** \rightarrow CoA-S-CH₂-CO-S-C_RH₅ \rightarrow CoA-S-CH₂-CO-CO-CO-CH₂Br \rightarrow CoA-S-CH₂-CO-S-C_RH₅ \rightarrow CoA-S-CH₂-CO-CO-CO-CH₂Br \rightarrow CoA-S-CH₂-CO-SPd, and not CoA-SH + **30** \rightarrow COA-SPD, and and and coA-SH + **30** \rightarrow COA-SPD, and Spd, as proposed by these authors¹, on the basis of the previous conclusion by Clements et al.⁴. We also conclude that the product of the overall reaction corresponds indeed to the structure 1, as initially proposed by Cullis et al.¹. This work provides a novel and regioselective strategy for preparing compounds 1, i.e. 1a and 1b, from CoA-SH by using spermidine substituted by the bromoacetamide function at the N¹ atom and the N⁸ atom. respectively. It is to be noted that this strategy differs from that using the S-bromoacetylCoA, as an intermediate, in the sense that the reactive carbon atom, substituted by the halogen, is introduced on the spermidine molety instead of the CoA moiety.

Finally, this work establishes a versatile and convenient synthetic strategy for preparing a variety of compounds, structurally resembling the multisubstrate inhibitor CoA-S-CH₂-CO-Spd 1, but differing by their cofactor moieties. As previously established², the shortening of the CoA moiety to the level of β -aletheine (compound **2a**) does not affect significantly the inhibitory effect on the histone acetyltransferase. Other analogs including the pantotheinyl radical have now been prepared (to be published). Work is in progress for comparing the inhibitory effects of **1a** and **1b**, as well as of different "shortened" analogs, on the histone and polyamine acetyltransferases.

EXPERIMENTAL SECTION

Commercial products: cystamine dihydrochloride purum (from Fluka, Switzerland); CoA-SH (from Sigma;USA) as the sodium salt: approx. 95% CoA-SH; other products, reagents and solvents of controlled purity. The BOP reagent, i.e.benzotriazolyl N-oxytri-dimethylamino-phosphonium hexafluorophosphate, was prepared as¹⁴. Elemental analyses were performed by the "Laboratoire de Microanalyses" (ENSCM, Montpellier). ¹H NMR spectra were measured on a Bruker WM 360 WB spectrometer functionning on the FT mode (NMR laboratory, C.C.I.P.E., CNRS-INSERM, Montpellier) using as an internal reference the residual proton signal of the solvent. The NMR chemical shifts bare given in ppm versus tetramethylsilane (TMS) or trimethylsilylpropionate (TSP). NMR assignments are essentially based on empirical correlations, and involved in some cases double resonance experiments. Coupling constants J in Hz; s = singlet; t = triplet; q = quintuplet. After correction for temperature effects, our NMR parameters for CoA-SH (at 38°C; see Fig.1 and Table 3) are in complete agreement with those previously reported by Lee and Sarma⁷ (at 30.5°C and referred to tetramethylammonium chloride, or TMA, as an internal reference: δ (TMA) = δ (TSP) + 3.20 ppm. Mass spectra (MS) were measured at the "Laboratoire de Mesures Physiques " with a spectrometer JEOL JMS DX300 (U.S.T.L., Montpellier) in Fast Atom Bombardment (Positive), if not stated otherwise, with NBA as a solvent. Analytical thin layer chromatography TLC was performed by using silica gel G60 F254 plates and preparative TLC by using Merck TLC G60 F254 plates. Revelator: plates sprayed (solution H2O:H2-SO₄:SO₄(NH₄)₂: 100 ml: 4 ml: 20 g) followed of strong heating. The nomenclature concerning the coenzyme A itself and its derivatives with spermidine is given according to ref⁷(see also formulae 1a and 1b).

As noted by Roberts and Caserio (Basic Principle of Organic Chemistry, 2nd edition), confusion is possible with the names and formulae for the derivatives of the coenzyme A (abbreviated CoASH to emphasize the SH group, whereas the acyl derivatives most often are called acylCoA); throughout this work we systematically included the sulfur atom in all the formulae of the coenzyme A derivatives, i.e. R-S-CoA. The name thioester is systematically used for the different R-S-CO-R' derivatives, in which a thiol R-SH is acylated by a carboxylic acid HOCO-R'.

N¹-[2-(S-coenzyme A) acetyl] spermidine amide ditrifluoroacetate (1a): Scheme 7.

25 (14 mg), dissolved in CF₃COOH (0.5 ml) is left 10 min at room temperature. After evaporation the solution affords **1a** (quantitative yield) as a white solid. ¹H NMR (D₂O): see Table 3.

N⁸-[2-(S-coenzyme A) acetyl] spermidine amide ditrifluoroacetate (1b): Scheme 7.

37 (23 mg) is dissolved in CF₃COOH (0.5 ml)and treated as above to yield 1b (quantitative yield) as a white solid. ¹H NMR (D_2O): see Table 3.

N^{1} [2-(S,N-acetyl β -aletheinyl) acetyl] spermidine amide dihydrochloride 2a(Ci): Scheme 10.

23 (1 g. 1.74 mmol) is dissolved in 6 ml of MeOH to which 0.75 ml 12N HCl is added. After standing 8 h, 0.8 ml HCl 12N are added. After 24 h, 0.75 ml 12 N HCl are added . After 48 h, the solution is evaporated. The product, dissolved in minimum MeOH, cristallizes. After addition of ether the product is filtered and dried **2a**(Cl) (695 mg, yield 96%). An analytical sample is obtained by recristallization in MeOH-EtOH; m.p. 191°C; yield 89%. MS: (m/z) 376 (M+H)⁺ (C₁₆H₃₃N₅O₃S, MW 375.5). pK₁ 8.63, pK₂ 10.40 (at 25°C). ¹H NMR (D₂O at 46°C) 1.62 (m, 4H, ⁶CH₂, ⁷CH₂); 1.78 (J =7.3, 2H, ²CH₂); 1.83 (s, 3H, CH₃CO); 2.30 (t, J = 6.6, 2H, ^{6°}CH₂); 2.58 (t, J = 6.6, 2H, ^{9°}CH₂); 2.85-3.0 (m, 6H, ³CH₂, ⁵CH₂, ⁸CH₂); 3.16 (s, SCH₂CO); 3.18 (t, J = 6.8, ¹CH₂: 4H in total); 3.25 (t, J = 6.4, ^{8°}CH₂); 3.28 (t, J = 6.4, ^{5°}CH₂): 4H in total. ¹H NMR (DMSO-d₆): 7.9 (t, 1H); 8.13 (broad t, 3H, ⁸NH₃†); 8.34 (t, 1H, amide NH's); 9.12 (broad s, 2H, ⁴NH₂†). Anal.calcd for C₁₆H₃₅N₅O₃SCl₂: C4_{2.85%}; H_{7.87%}; N_{15.62%}; O_{10.71%}; S_{7.15%}; Cl_{15.81%}.Found: C_{42.80%}; H_{7.72%}; N_{15.47%}; S_{6.38%}; Cl_{17.44%}.

N^{L} [2-(8,N-acetyl β -aletheinyl) acetyl spermidine amide ditrifluoroacetate 2a(F): Scheme 10.

23 (30 mg, 0.05 mmol) is dissolved in CF₃COOH (0.5 ml). After 1/2 h at room temperature, the solution is evaporated, dissolved in water and washed with CH₂Cl₂. The aqueous layers, hyphilized, lead to 2a(F). The ¹H NMR spectrum is identical to 2a(C).

N¹-[2-(8,N-acetyl cysteaminyl) acetyl] spermidine amide ditrifluoroacetate (3a): Scheme 11.

9 (73 mg) is dissolved in minimum of CF₃COOH. After 1/2 h at room temperature, the solution is evaporated leading to **3a** (quantitative yield). MS: (m/z) $305(M+H)^+(C_{13}H_{29}N_4O_2S, MW 304.4)$. ¹H NMR (D₂O) δ 1.65 (m, 4H, ⁶CH₂ + ⁷CH₂); 1.80 (m, 2H, ²CH₂); 1.89 (s, 3H, CH₃CO); 2.62 (t, 2H, ⁹CH₂); 2.92-2.97 (m, 6H, ³CH₂, ⁵CH₂, ⁸CH₂); 3.20 (s, SCH₂CO); 3.23 (t, ¹CH₂): 4H in total; 3.30 (t, 2H, ⁸CH₂).

2-(S,N-acetyl cysteaminyl) acetic acid (6).

1) from N-acetyl cysteamine $\mathbf{5}^{13}$: Scheme 11. A mixture of $\mathbf{5}$ (1.6 g, 13.4 mmol), KOH 1 N (27 ml) and bromoacetic acid (1.96 g, 14.1 mmol) is left 3 h at room temperature, then evaporated and washed with acetone. The residue acidified and evaporated is dissolved in water and extracted by CH₂Cl₂. The aqueous phase is evaporated under reduced pressure and dried, leading to an oil **6** (1.7 g, yield 71%). CI-MS (Xe) (m/z): 178 (M+H)⁺(C₆H₁NO₃S, MW 177.2). ¹H NMR (D₂O) δ 1.80 (s, 3H, CH₃CO); 2.60 (t, J=10, 2H, ^{9'}-CH₂S); 3.20 (s+t, 4H, ^{8'}CH₂N, S-CH₂COOH).

2) from N-acetyl S-(2-bromoacetyl) cysteamine thioester 28: Scheme 4. To a solution of 28 (see below in this experimental section) (725 mg, 3 mmol) in EtOH (10 ml) is added a solution of KOH in EtOH (423 mg in 10 ml). The solution is evaporated and acidified by HCl and reevaporated. The residue dissolved in water is extracted by CH_2Cl_2 . The aqueous phase is evaporated and resuspended in acetone leading to 6 (250 mg, yield 47%).

2-(S,N-acetyl cysteaminyl) acetic acid methyl ester (7): Scheme 11.

6 (300 mg, 1.69 mmol), dissolved in MeOH (15 ml) is treated at room temperature with an etheral solution of CH_2N_2 until the yellow colour remains persistant. After 1 h a drop of acetic acid is added to destroy the excess of CH_2N_2 and evaporation leads to an oil 7 (250 mg, yield 77%). MS: (m/z) 192 (M+H)⁺ ($C_7H_{13}NO_3S$, MW 191.3). ¹H NMR (D₂O) δ 1.90 (s, 3H, CH₃CO); 2.70 (t, 2H, ⁹CH₂S); 3.3 (t, 2H, ⁸CH₂N); 3.35 (s, 2H, SCH₂CO); 3.7 (s, 3H, OMe).

N⁴,N⁶-di-tert-butyloxycarbonylspermidine (8): Scheme 8.

 N^1 , N⁴-di-tert-butyloxycarbonyl N⁴-(2'-cyanoethyl)1,4-diaminobutane **12** (3.3 g, 9.66 mmol), prepared according to⁹ is dissolved in absolute EtOH and stirred under atmospheric pressure of H₂ during 12 days, with Raney Ni. After filtration and evaporation, an oily residue is obtained which is dissolved in CHCl₃ and washed several times with a 10% citric acid solution. The aqueous layers are made basic with a saturated NaOH solution. The extraction with CH₂Cl₂ leads to **8** (2 g, yield 60%). MS: (m/z) 346 (M+H)⁺ (C₁₇H₃₅N₃O₄S, MW 345.5). ¹H NMR spectrum identical to that published by Humora and Quick ⁹.

N¹.[2-(S,N-acetyl cysteaminyl) acetyl] N⁴.N⁶-di-tert-butyloxycarbonylspermidine amide (9).

1) from the methyl ester 7: Scheme 11. Compound 7 (100 mg, 0.52 mmol) and 8 (600 mg, 1.74 mmol) are dissolved in MeOH. The solution is evaporated and heated at 100°C, during 10 h, under Ar atmosphere. The mixture treated again as above for eliminating the excess of amine, leads to an oil, which is chromatographed on silica gel with CHCl₃ as a solvent. 9 (73 mg, yield 28%) is obtained as an oily residue. MS: (m/z) 505 $(M+H)^+$ ($C_{23}H_{44}N_4O_6S$, MW 504.7). ¹H NMR (CDCl₃) δ 1.40, 1.42 (2s, Boc groups at ⁴N and ⁸N: no regioselective assignment); 1.40-1.70 (m, ²CH₂, ⁶CH₂ and ⁷CH₂): 24H in total; 1.95 (s, 3H, CH₃CO); 2.70 (t, 2H, ⁹CH₂S); 3.1-3.45 (m, ³CH₂, ⁵CH₂, ⁸CH₂ and ⁸CH₂); 3.18 (s, SCH₂CO):10H in total; 4 7 (broad signals, ⁸NHBoc); 6.8 and 7.5 (amide NH groups).

2) from N-acetyl cysteamine 5 : Scheme 3. To 5 (109 mg, 0.91 mmol) dissolved in NaOH 1N (2 ml) is added a solution of 24 (464 mg, 1.0 mmol) in MeOH (10 ml). After 4 h at room temperature the solvent is evaporated; the residue is extracted with CH_2Cl_2 and washed with water. The organic layer, dried on Na₂-SO₄ leads to a mixture which is chromatographed on silicagel (solvent MeOH-CHCl₃ 2:98,v:v). 9 (300 mg, yield 65%) is obtained as an oil. ¹H NMR spectrum identical to that of 9 obtained according to procedure 1.

3) from N-acetyl S-(2-bromoacetyl) cysteamine thioester 28: scheme 3. To 28 (190 mg, 0.8 mmol) is added, first, a solution of 8 (3.6 g, 10.4 mmol) in dioxane (8 ml) and secondly, NaOH 4N (0.4 ml). After 15 min of stirring at room temperature, dioxane is evaporated. The residue is then extracted with CHCl₃, washed with KHSO₄ 1M, water and dried on Na₂SO₄, leading to a residue which is dissolved in EtOAc, filtered under vacuum on silicagel G60 Merck (7 g), followed by extensive washings with EtOAc. The organic solution after evaporation yields 460 mg of a residue showing by TLC analysis (MeOH:EtOAc; 20:80; v:v) a major product (coloured with iodine). By preparative TLC of 80 mg from the crude product, pure 9 is obtained, as established by ¹H NMR (45 mg, yield 63%).

N.N'-diacetyl- β -alethine (17): Scheme 12.

1) in heterogeneous phase. To a solution of 18 (3 g, 12.3 mmol) in CH_2Cl_2 (25 ml) is added a solution of cystamine dihydrochloride (0.5 g, 2.5 mmol) in H_2O (10 ml) (pH 10 with NaOH 2N). The mixture is stirred overnight and then the organic phase is separated and washed with water. The aqueous phases are acidified with HCl 1N to pH 2.6 and evaporated. The oily residue is stirred with EtOAc. The precipitate thus formed is crystallized two times in MeOH leading to 17 (200 mg, yield 24%); m.p. 209-210°C; [m.p.¹⁵ 207.5-208°C, m.p.¹³ 190°C]. MS: (m/z) 379 (M)⁺ ($C_{14}H_{26}N_4O_4S_2$, MW 378.6). ¹H NMR (D₂O) δ 1.90 (s, 2x3H, CH₃CO); 2.35 (t, 2x2H, ⁶CH₂CO); 2.75 (t, 2x2H, ⁹CH₂S); 3.40 (m, 2x4H, ⁵CH₂ and ⁸CH₂).

2) in homogeneous phase . To **18** (120 g, 0.49 mol) is added a solution of 20 g of cystamine (0.13 mol) in 100 ml of pyridine. After one night at room temperature, a solid residue is obtained upon filtration (followed by several washings with EtOAc) and solvent evaporation. Upon crystallization in MeOH, **17** (8 g, yield 16%, m.p. 197-198°C) is thus obtained judged pure by ¹H NMR. This product was used successfully for the following synthetic steps.

N-acetyl β -alanyl anhydride (18): Scheme 12.

A suspension of β -alanine (2 g, 22.5 mmol) in acetic anhydride (15 ml) was stirred until it is completely dissolved and concentrated under strong heating. **18** (2.7 g, yield 99%) is obtained as a colourless oil, soluble in CH₂Cl₂ (the corresponding acid is totally insoluble in this solvent).

N-acetyl β -aletheine (20): Scheme 12.

17 (11.9 g, 31 mmol) is dissolved in 29 ml of NaOH 0.5 N to which is added solution of 10.8 g of NaBH₄ in 27 ml NaOH 0.5N. The resulting solution is heated on an oil bath (150°C) under nitrogen atmosphere, with magnetic stirring. After 15 min a very strong gas escape is observed. The reaction flask is kept at room temperature during 0.5 hour. After extraction with CHCl₃ and evaporation of the organic phase, **20** is obtained as a white solid (11 g, yield 92%), homogeneous by TLC (neutral alumina with MeOH:CH₂Cl₂; 5:95; v:v; coloured yellow by I₂). MS: (m/z) 191(M+H)⁺ ($C_7H_1A_{2}O_2S$, MW 190.3). ¹H NMR (D₂O) δ 1.80 (s, 3H, CH₃CO); 2.30 (t, 2H, ⁶CH₂CO); 2.50 (t, 2H, ⁹CH₂S); 3.30 (m, 4H, ⁵CH₂ and ⁸CH₂).

2-(S,N-acetyl β -aletheinyl) acetic acid (21): Scheme 11.

Bromoacetic acid (200 mg, 1.44 mmol) is added to a solution of **20** (260 mg, 1.38 mmol) in KOH 1 N (3.76 ml). After 12 h at room temperature, the solution is evaporated. The residue is washed three times with acetone and resuspended in water (30 ml). The solution is acidified by concentrated HCl and extracted by CH_2Cl_2 . The aqueous layer is evaporated and washed with acetone (5x30 ml). The evaporation of the

organic solution leads to an oil **21** (253 mg, yield 74%). MS: (m/z) 249 $(M+H)^+$ ($C_{9}H_{16}N_2O_4S$, MW 248.3) .¹H NMR (D_2O) δ 1.90 (s, 3H, CH₃CO); 2.35 (t, 2H, ⁶CH₂); 2.7 (t, 2H, ⁹CH₂S); 3.32 (s, SCH₂CO); 3.30-3.40 (m, ⁵CH₂ and ⁸CH₂): 6H in total. In one preparation, a cristallized product **21** was obtained ; m.p.114-116°C. Anal. calcd for C₉H₁₆N₂O₄S: C_{43,53%}; H_{6,49%}; N_{11.28%}; O_{25,78%}; S_{12.91%}. Found: C_{43,13%}; H_{6,53%}; N_{11.19%}; O_{25,49%}; S_{12.62%}.

2-(8,N-acetyl β -aletheinyl) acetic acid methyl ester (22): Scheme 11.

A solution of **21** (253 mg, 1.02 mmol) in MeOH (20 ml) is treated as above (preparation of **7**) leading, after chromatography on silicagel (MeOH: CH_2Cl_2) to **22** (88 mg, yield 33%); m.p. 80-81°C. MS: (m/z) 263 (M+H)⁺ ($C_{10}H_{18}N_2O_4S$, MW 262.3). ¹H NMR (CDCl₃) δ 1.89 (s, 3H, CH₃CO); 2.34 (t, 2H, ⁶CH₂); 2.73 (t, 2H, ⁹CH₂S); 3.20 (s, SCH₂CO); 3.40-3.55 (m, 4H, ⁵CH₂ and ⁸CH₂N); 3.67 (s, 3H, OMe); 6.40 (m, 2H, amide NH's). Anal. calcd for $C_{10}H_{18}N_2O_4S$: $C_{45.79\%}$; $H_{6.92\%}$; $N_{10.68\%}$; $O_{24.40\%}$. Found: $C_{45.81\%}$; $H_{7.07\%}$; $N_{10.51\%}$; $O_{24.76\%}$

N^{L} [2-(8,N-acetyl β -aletheinyl) acetyl] N^{4} , N^{6} -di-tert-butyloxycarbonylspermidine amide (23).

1) from methyl ester 22: Scheme 11. Compound 22 (80 mg, 0.30 mmol) and 8 (750 mg, 2.17 mmol) are dissolved in MeOH. The solution is evaporated and heated during 24 h to 100°C under Ar and treated as usually: washings with citric acid 10%, NaHCO₃ saturated solution and water, leading to 130 mg of an oil. 60 mg of it are chromatographed on preparative TLC with MeOH-acetone, 6:94 (v:v) as solvent. Pure 23 (30 mg, yield 38%) is obtained. MS: (m/z) 576 (M+H)⁺($C_{26}H_{49}N_5O_7S$, MW 575.8). ¹H NMR (CDCl₃) δ 1.50, 1.52 (2s, Boc groups); 1.40-1.70 (m, ²CH₂, ⁶CH₂ and ⁷CH₂): 24 H in total; 1.95 (s, 3H, CH₃CO); 2.40 (t, 2H, ⁶CH₂); 2.75 (t, 2H, ⁹CH₂S); 3.10-3.25 (m, 4H, ³CH₂, and ⁵CH₂): and 3.20 (s, SCH₂CO): 6H in total; 3.50 (m, 4H, ⁵CH₂ and ⁸CH₂); 4.70, 6.60, 7.10, 7.50 (4m, 4H, NH).

2) from N-acetyl β -alethetine 20: Scheme 10. Compound 20 (330mg, 1.73 mmol) is dissolved in 4ml NaOH 0.75 N to which 24 (1.05 g, 2.25 mmol) in 7 ml CH₃OH, is added by stirring and kept at room temperature, overnight. This solution is evaporated and the residue is washed with CH₃OH and purified by preparative TLC to give 23 (520 mg, yield 52%). In another preparative assay with 650 mg of 20 the crude product 23 is chromatographed on neutral alumina (EtOAc : hexane, followed by methanol : ethyl acetate mixtures). Finally the pure compound 23 is eluted with MeOH-EtOAc, 5:95 (v:v): 1.54 g; yield 78%. ¹HNMR is identical to procedure 1.

N¹-(2-bromoacetyi) N⁴, N⁸-di-tert-butylozycarbonylspermidine amide (24): Scheme 8.

To a solution of **8** (280 mg, 0.81 mmol) in CH₂Cl₂ (50 ml) is added, successively: dicyclohexylcarbodiimide (165 mg), hydroxybenzotriazole (108 mg) and bromoacetic acid (111 mg). A precipitate is formed immediatly and, after 24 h at room temperature, the suspension is filtered. The residue is resuspended in CH₂Cl₂ (10 ml). The filtrate is chromatographed on silicagel. The product is eluted with MeOH-CH₂Cl₂, 1: 99 (v:v). **24** (340 mg, yield 89%) is obtained as a colourles oil. MS: (m/z) 466, 468 (M+H)⁺ (BrC₁₉H₃₆N₃O₅, MW 466.4). ¹H NMR (CDCl₃) δ 1.38 and 1.42 (2s, Boc groups); 1.30-1.70 (m, ²CH₂, ⁶CH₂) and ⁷CH₂): 24H in total; 3.05-3.15 (m, 4H, ³CH₂ and ⁵CH₂); 3.15-3.30 (m, 4H, ¹CH₂ and ⁸CH₂); 3.80 (s, 2H, BrCH₂CO).

N^L[2-(S-Coensyme A) acetyl] N⁴.N⁶-di-tert-butyloxycarbonylspermidine amide (25): Scheme 7.

To a solution of CoA-SH (sodium salt; 15 mg, ca 18 µmol) in water (1 ml), is added successively: NaOH 1N (15 µl) and a solution of **24** (13.5 mg, 29 µmol) in THF (135 µl). After 1 h at room temperature, the solution is evaporated, diluted with water and washed several times with CH₂Cl₂. The aqueous layer, after hyphilisation, leads to **25** (14 mg ca 13 µmol; yield ca 70%) as white solid. ¹H NMR (D₂O) δ 1.42, 1.44 (2s, Boc groups); 1.30-1.80 (m, ²CH₂, ⁶CH₂ and ⁷CH₂): 24 H in total; 2.75 (t, 2H, ⁹CH₂S); 3.10 (t, 2H, ⁸CH₂); 3.25 (m, 6H, ¹CH₂, ³CH₂ and ⁵CH₂); 3.30 (s, 2H, SCH₂CO).

N-acetyl S-(2-bromoacetyl) cysteamine thioester (28).

1) from 5 with bromoacetylihiophenol 30: Scheme1. A solution of 5 (90 mg, 0.76 mmol) in some acetone is added to a solution of 30 (2.6 g, 11.3 mmol) in a mixture of acetone (43 ml) and KHCO₃ 0.1M (17 ml). After 1 h at room temperature, the solution is acidified with HCl 0.1N to pH 2. The acetone is evaporated under reduced pressure and the suspension extracted by CH_2Cl_2 . The organic layers are washed with KHCO₃ 3% solution and evaporated. The oily residue is dissolved in C_6H_6 and filtered, under vacuum, on silicagel G60 (Merck)(10 g), this one, washed several times with C_6H_6 . The filtrate contains essentially bromoacetyl thiophenol. Then, the silicagel is washed with MeOH-CH₂Cl₂, 20:80 mixture. The filtrate leads, after evaporation, to 28 (130 mg, yield 72%). MS: (m/z) 240, 242 (M+H)⁺ ($BrC_6H_1_0NO_2S$, MW 240.1). ¹H NMR (CDCl₃) δ 2.00 (s, 3H, CH₃CO); 3.10 (t, 2H, CH₂SCO); 3.40 (t, 2H, CH₂N); 4.10 (s, 2H, COCH₂Br).

2) from 5 with bromoacetyl bromide. To a solution of 5 (119 mg, 1 mmol) is added, dropwise, bromoacetyl bromide (139 μ l). The mixture is stirred under reduced pressure during 5 min, then added of KHCO₃ saturated solution and extracted with CH₂Cl₂. **28** (130 mg, yield 54%) is obtained by evaporation of organic phases. ¹H NMR is identical to the product obtained precedently by action of bromoacetyl thiophenol.

N-acetyl S-(2-bromoacetyl) β -aletheine thioester (29): Scheme 1.

A solution of **30** (8 g, 35 mmol) in a mixture of acetone (43 ml) and $KHCO_3 0.1M (17 ml)$ is added to **20** (185 mg, 0.97 mmol). After 1 h at room temperature, the mixture is evaporated and washed with MeOH. This suspension is filtered, evaporated and washed with CH_2Cl_2 . The new suspension is filtered and evaporated. The residue is crystallized in EtOAc, then C_6H_6 , leading to **29** (80 mg, yield 27%). TLC homogeneous with MeOH: CH_2Cl_2 ; 8:92 (v/v); m.p. 118-120°C; MS:(m/z) 311, 313 (M+H)⁺ (BrC₉H₁₅N₂O₃S, MW 311.2) .¹H NMR (CDCl₃) $\delta 2.00$ (s, 3H, CH_3CO); 2.30 (t, 2H, CH_2CO); 3.10 (t, 2H, CH_2S); 3.50 (m, 4H, CH_2N); 4.10 (s, 2H, SCOCH₂Br); 6.40-6.90 (broad signal, 2H, NH). Anal. calcd for BrC₉H₁₆N₂O₃S: C_{34.74%}; H_{4.86%}; N_{9.00%}; 0_{15.53%}. Found: C_{34.87%}; H_{4.96%}; N_{8.81%}; 0_{15.59%}.

Bromoacetyl thiophenol (30)

Although the synthesis of this compound has been described in the literature^{3,5} we describe here our preparation and emphasize on its purification. Thiophenol (6 ml, 58.4 mmol) is added in several times to bromoacetyl bromide (7.2 ml). The mixture is maintained stirred, under reduced pressure 60 min at room temperature. The solution is added to saturated solution of NaHCO₃ (70 ml). The suspension is extracted with ether. The organic layers are washed two times with diluted solution of NaHCO₃. Oil **30** (12 g, yield 89%) crystallizing in cold (m.p. 39°C) is obtained. The crystallization in C₆H₆-hexane leads, after seeding and cooling, in three crops, to **30** (11.2 g, yield 83%). (m.p. 41-42°C) homogeneous in TLC; m.p. 36.3-37.3°C (EtOH/H₂O, yield³ 57%; m.p. 38-39°C (benzene:petroleum ether), yield⁵ 59%). ¹H NMR (CDCl₃) δ 4.05 (s, 2H, BrCH₂CO); 7.45 (s, 5H, C₆H₅S).

Phenyithioacetic acid (31): Scheme 4.

30 (1g, 4.3 mmol) is added to a solution of KOH (600 mg) in minimum of absolute EtOH. A precipitate is formed instantaneously which, filtered and dried, leads to potassium phenylthioacetate. This salt is dissolved in water and acidified with concentrated HCl, then extracted with CH₂Cl₂. The evaporation of the organic phase leads to **31** (670 mg, yield 93%); m.p. 63-64°C; m.p. ⁶ 64.5-65.5°C. ¹H NMR (CDCl₃) δ 3.66 (s, 2H, CH₂); 7.00-7.40 (m, 5H, C₆H₅); 10.10 (s, 1H, COOH).

N-tert-butyloxycarbonyl 1,3-diaminopropane (32): Scheme 9.

A solution of Boc₂O (8.5 g, 39 mmol) in dioxane (50 ml) is added slowly to a solution of 1,3-diaminopropane (3 g, 40.5 mmol) in water (30 ml). Firstly, there is a precipitation, then redissolution. After 24 h at room temperature, dioxane is evaporated and the suspension extracted by CH₂Cl₂. The organic phase is washed by KHSO₄ 1N, and the aqueous phase, basified by saturated NaOH solution, is extracted by CH₂Cl₂. The organic solution is evaporated to give **32** (630 mg, yield 8.9%). TLC homogeneous with N(Et)₃: MeOH:EtOAc; 5: 20: 75(v/v/v) . ¹H NMR (CDCl₃) δ 1.24 (s, 2H, NH₂); 1.41 (s, 9H, Boc); 1.59 (q, 2H, ²CH₂); 2.75 (t, 2H, CH₂N); 3.19 (q, 2H, ¹CH₂N); 3.68 (s, 1H, NHBoc).

N¹-tert-butyloxycarbonyl N³-(3-cyanopropyl) 1,3-diaminopropane (33): Scheme 9.

To **32** (630 mg, 3.6 mmol) dissolved in n-butanol (30 ml), is added successively: Na₂CO₃ (1.1 g). KI (800 mg) and 4-chlorobutyronitrile (375 μ l, 3.8 mmol). After 6 h of reflux, the mixture is filtered and evaporated. The oil is resuspended in CHCl₃, washed with water, evaporated, giving crude **33** (840 mg, yield 97%).

N¹,N³-di-tert-butyloxycarbonyl N³-(3-cyanopropyl) 1,3-diaminopropane (34): Scheme 9.

To a solution of crude **33** (840 mg, 3.5 mmol) in dioxane (20 ml) is added a solution of Boc_2O (1g) in dioxane (10 ml). After 12 h at room temperature, the solvent is evaporated and the residue, taken by CHCl₃ is washed successively by: KHSO₄ 1N, a diluted NaHCO₃ solution and water. The organic layers lead to an oily residue which is chromatographed on silicagel with ether:hexane, 50:50 (v:v) affording **34** (400 mg, yield 34%). MS: (m/z) 342 (M+H)⁺ (C₁₇H₃₁N₃O₄. MW 341.5). ¹H NMR (CDCl₃) δ 1.42, 1.45 (2s, 18H, Boc groups); 1.66 (m, 2H, ²CH₂); 1.87 (m, 2H, ⁶CH₂); 2.33 (t, 2H, ⁷CH₂CN); 3.08 (q, 2H, ¹CH₂); 3.2-3.35 (m, 4H, ³CH₂ and ⁵CH₂).

N¹,N⁴-di-tert-butyloxycarbonylspermidine (35): Scheme 9.

To **34** (735 mg, 2.15 mmol), dissolved in anhydrous ether (40 ml) is added slowly at 0°C, LiAlH₄ (550 mg). After 12 h at 0°C, 1 ml of a 15% NaOH solution is added to the suspension and finally 10 ml of water. The extraction gives **35** as an oil (620 mg, yield 84%). MS: (m/z) 346 (M+H)⁺ ($C_{17}H_{35}N_3O_4$, MW 345.5). ¹H NMR (CDCl₃) δ 1.20-1.70 (2s+m, Boc groups + ²CH₂, ⁶CH₂ and ⁷CH₂):24H in total; 2.69 (t, 2H, ⁸CH₂); 3.00-3.40 (2m, 6H, ¹CH₂, ³CH₂ and ⁵CH₂).

N⁸-(2-bromoacetyl) N¹,N⁴-di-tert-butyloxycarbonylspermidine amide (36): Scheme 9.

To a solution of **35** (610 mg, 1.8 mmol) in CH₂Cl₂ (70 ml) is added successively: bromoacetic acid (250 mg), N-methylmorpholine (195 μ l) and BOP¹⁴ (780 mg). After 24 h at room temperature, the solution is evaporated and extracted by EtOAc, leading to **36** (670 mg, yield 80 %). TLC homogeneous with MeOH: CH₂Cl₂; 2: 98 (v/v).¹H NMR (CDCl₃) δ 1.40, 1.42 (2s, Boc groups); 1.40-1.70 (m, ²CH₂, ⁶CH₂ and ⁷CH₂): 24H in total; 3.10 (q, ¹CH₂); 3.15-3.25 (m, ³CH₂ and ⁵CH₂); 3.35 (q, 2H, ⁸CH₂); 3.75 (s, 2H, CH₂Br).

N⁶.[2-(S-coenzyme A) acetyl] N¹,N⁴-di-tert-butyloxycarbonylspermidine amide (37): Scheme 7.

To a solution of CoA-SH (Na salt; 15 mg, ca 18 μ mol) in water (0.2 ml) is added NaOH 1N (50 μ) and **36** (30 mg, 64 μ mol) dissolved in MeOH (500 μ). After 4 h at room temperature, CH₃OH is evaporated and the resulting suspension is diluted with water (10 ml) and repeteadly extracted with portions of 10 ml of ether. The aqueous phase is lyophilized, leading to **37**, as white solid (24 mg). ¹H NMR (D₂O) δ 1.20-1.60 (2s+m, 24H, Boc+ ²CH₂, ⁶CH₂ and ⁷CH₂); 2.57 (t, 2H, ⁹CH₂S); 2.93 (t, 2H, ⁸CH₂); 3.05-3.10 (m, 6H, ¹CH₂, ³CH₂ and ⁵CH₂); 3.14 (s, COCH₂S).

2-(S,N-acetyl cysteaminyl) acetic acid thiophenyl ester (39): Scheme 5.

6 (70 mg, 0.4 mmol) is heated 3/4 h at 100°C with Ac₂O (6 ml). The anhydride in excess is completely removed under vacuum. The residue is dissolved with anhydrous CH₂Cl₂ and 3.6 ml of thiophenol. After 1/2 h, the solution is concentrated until 0.5 ml added with DMAP (10 mg) and left overnight at room temperature. By preparative TLC (UV revelation) the spot of Rf 0.5 (solvent MeOH:CH₂Cl₂, 5:95 (v:v)) leads to **39** as an oil (12 mg, yield 11%). ¹H NMR (CDCl₃) δ 1.90 (s, 3H, CH₃CO); 2.70 (t, 2H, ⁹CH₂S); 3.30 (m, ⁸CH₂) and 3.40 (s, SCH₂CO):4H in total; 7.50 (s, 5H, C₆H₅S).

2-phenylthioacetanilide (40): Scheme 6.

To aniline (500 µl) is added, successively : dioxane (7ml), water (3 ml), NaOH 1N (1.5 ml) and bromoacetyl thiophenol **30** (231 mg, 1 mmol). The solution is left 10 min at room temperature, then evaporated. The residue, taken with CH₂Cl₂, filtered, leads to 2-phenylthioacetanilide **40** (150 mg, yield 62%); m.p. 70-71°C recrystallized in CH₂Cl₂-hexane giving a pure compound; m.p. 75-76 °C; m.p.⁶ 81.5-82.5°C. MS: (m/z) 244 (M+H)⁺ ($C_{14}H_{13}NOS$, MW 243.3). ¹H NMR (CDCl₂) δ 3.76 (s, 2H, SCH₂CO); 7.00-7.50 (m, 10H, C₆H₅N and C₆H₅S); 8.52 (s, 1H, NH).

2-phenylthioacetylbutylamide (41): Scheme 6.

To butylamine (200 µl) is added successively: NaOH 4N (375 µl), dioxane (7 ml) and bromoacetyl thiophenol **30** (231 mg, 1 mmol). TLC analysis shows that the reaction is instantaneous. After 10 min at room temperature, the solution is evaporated and the residue taken with CHCl₃, filtered and evaporated giving 2-phenylthioacetylbutylamide **41** (197 mg, yield 88%), m.p. 29-31°C recrystallized in acetone-hexane giving a pure compound; TLC homogeneous with AcEt: Hexane; 50: 50 (v/v). m.p. 35 °C. ¹H NMR (CDCl₃) δ 0.82 (t, 3H, CH₃); 1.20 (m, 2H, CH₂CH₃); 1.85 (m, 2H, NCH₂CH₂); 3.22 (q, 2H, CH₂N); 3.51 (s, 2H, SCH₂CO); 7.10-7.30 (m, 5H, C₆H₅S). Anal. calcd. for C₁₂H₁₇NOS: C_{64.53%}; H_{7.69%}; N_{6.27%}; O_{7.16%}; S_{14.35%}. Found: C_{64.76%}; H_{7.67%}; N 6.07%; O_{7.42%}; S_{14.25%}.

CoA-S-(2-bromoacetyl) thioester (42): Scheme 1.

CoA-SH (Na salt; 5 mg, 6 µmol) is dissolved in KHCO₃ 0.1M solution (0.2 ml) and acetone (0.5 ml). Bromoacetylthiophenol **30** (0.125 g, 0.54 mmol) [recristallized four times in $C_{0}H_{6}$:hexane (see preparation of **30**)], dissolved in a mixture of KHCO₃ 0.1M (0.2 ml) and acetone (0.5 ml) is added to CoA-SH solution. Some additional acetone is added for solubilization. The solution, left at room temperature, 45 min, is acidified with HCl 0.1 N to pH 2. The acetone is evaporated under reduced pressure. The suspension obtained is repeteadly extracted with 10 portions of 10 ml of ether, each organic layer being washed with 5 ml of water. The aqueous layers are lyophilized, leading to a product characterized by NMR (D₂O). As shown in Fig.1. The ¹H NMR spectrum does not show any significant signal belonging to a phenyl group but displays at δ 3.01 (t, ⁹CH₂S) and at 4.17 (s, CO-CH₂Br).

Phenyl phenylthiothiolacetate (43)

Bromoacetylthiophenol **30** (1 g, 4.3 mmol) is refluxed with 35 ml ethanol. Water is added until clouding. Reflux is maintened during 5 h. The solution is concentrated until clouding. At room temperature the cristallization is completed by addition of water. The filtration gives **43** (300 mg, yield 31%) as white crystalline material; m.p.66-67°C;m.p.63.5-65°C⁶. ¹H NMR is according to the related structure.

REFERENCES

- 1. Cullis, P.M.; Wolfenden, R.; Cousens, L.S.; Alberts, B.M.; J. Biol. Chem. 1982, 257, 12165.
- 2. Parello, J.; Roblot, G.; Wylde, R.; Martin, A.; C. R. Acad. Sci. Paris 1990, 310 série II, 144.
- 3. Chase, J.F.A.; Tubbs, P.K.; Biochem. J. 1969, 111, 225.
- 4. Clements, P.R.; Wallace, J.C.; Keech, D.B.; Anal. Biochem. 1976, 72, 326.
- 5. Dagli, D.J.; Yu, P.S.; Wemple J.; J. Org. Chem. 1975, 40, 3173.
- 6. Field, L.; Carlile, C.G.; J. Org. Chem. 1961, 26, 3170.
- 7. Lee, C.H.; Sarma, R.H.; FEBS Letters 1974, 43, 271
- 8. Leslie, A.G.W.; Moody, P.C.E.; Shaw, W.V.; Proc. Natl. Acad. Sct. U.S.A. 1988, 85, 4133.
- 9. Humora, M.; Quick, J.; J. Org. Chem. 1979, 44, 1166.
- 10. Bergeron, R.J.; Acc. Chem. Res 1986, 19, 105.
- Ganem, B.; Acc.Chem.Res 1982, 15, 290; Sundaramoothi, J.L.; Fourrey, J.L.; Das, B.C.; J. Chem. Soc. Perkin Trans I 1984, 2759; Sundaramoothi, J.L.; Marazano, C.; Fourrey, J.L.; Das, B.C. Tetrahedron Letters 1984, 25, 3191; Lurdes, M.; Almeida, S.; Crehn, L.; Ragnarson, U.; J. Chem. Soc. Perkin Trans I 1988, 1905.
- 12. Patai, S.; "Chemistry of the Thiol Group", Wiley NewYork 1974, part 2, 721.
- 13. Baddiley, J.; Thain, E.M.; J. Chem. Soc. 1951, 3425.
- 14. Castro, B.; Darmoy, J.R.; Evin, G.; Selve, C.; Tetrahedron Letters 1975, 1219.
- 15. Tarbell, D.S. and Cameron, B.P.; J. Am. Chem. Soc. 1956, 78, 2731.